How Buffers Work

How do they resist pH change?
pH change when adding acid to water
1 liter of water, so $\mathrm{V}=1 \mathrm{~L} ; \mathrm{pH}=7$
Add 1 mL 1.0 M HCl , so $\mathrm{V}_{1}=0.001 \mathrm{~L}, \mathrm{M}_{1}=1.0 \mathrm{M}$
Use $V_{1} \times M_{1}=V_{2} \times M_{2}$ to calculate $M_{2} ; V_{2}=1 L$
$0.001 \mathrm{~L} \times 1.0 \mathrm{M}=1 \mathrm{~L} \times \mathrm{M}_{2} ; \mathrm{M}_{2}=0.001 \mathrm{M}=10^{-3} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=10^{-3} \mathrm{M} ; \mathrm{pH}$ goes from 7 to 3
pH change when adding base to water
1 liter of water, so $\mathrm{V}=1 \mathrm{~L} ; \mathrm{pH}=7$
Add 1 mL 1.0 M NaOH , so $\mathrm{V}_{1}=0.001 \mathrm{~L}, \mathrm{M}_{1}=1.0 \mathrm{M}$ Use $V_{1} \times M_{1}=V_{2} \times M_{2}$ to calculate $M_{2} ; V_{2}=1 \mathrm{~L}$
$0.001 \mathrm{~L} \times 1.0 \mathrm{M}=1 \mathrm{~L} \times \mathrm{M}_{2} ; \mathrm{M}_{2}=0.001 \mathrm{M}=10^{-3} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=10^{-3} \mathrm{M} ;\left[\mathrm{H}^{+}\right]=10^{-11} \mathrm{M} ; \mathrm{pH}=11$

How Buffers Work

Buffers are a mixture of a weak acid (HA) and its conjugate base (A -)

Examples: $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{NaCH}_{3} \mathrm{COO}$, or $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$

$$
\begin{gathered}
\mathrm{H}^{+}+\mathrm{A}^{-} \rightarrow \mathrm{HA} \\
\mathrm{OH}^{-}+\mathrm{HA} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-}
\end{gathered}
$$

Buffer Calculations

$$
\begin{aligned}
& H A \leftrightarrow H^{+}+A^{-} \\
& \frac{K_{a_{a}}}{\left[\frac{H}{+}+\right]}=\frac{[A-]}{[H A]}
\end{aligned}
$$

"Handy Equation"
Henderson-Hasselbach Equation

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-}\right]
$$

When $\left[A^{-}\right]=[H A]$
$[\mathrm{A}] /[\mathrm{HA}]=1 ; \log 1=0$
So, $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
$\frac{K_{a-}}{\left[\mathrm{H}^{+}\right]}=\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
When $\left[A^{-}\right]=[H A]$
$\left[A^{-}\right] /[H A]=1$
So, $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}$

Calculation shortcut

[] = concentration in moles/L
$\left[A^{-}\right] /[\mathrm{HA}]=\left(\mathrm{A}^{-}\right.$in $\left.\mathrm{mol} / \mathrm{L}\right) /(\mathrm{HA}$ in $\mathrm{mol} / \mathrm{L})$
The value of L is the same for A^{-}and $H A$, so
$\left[A^{-}\right] /[H A]=\left(m o l ~ o f ~ A^{-}\right) /(\operatorname{mol}$ of $H A)$
pH change when adding acid to buffer
Buffer: $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and $0.10 \mathrm{M} \mathrm{NaCH} 3{ }_{3} \mathrm{COO}$ pKa of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.75 (so the buffer is pH 4.75)

1 L Buffer, pH 4.75 contains $0.10 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$ and $0.10 \mathrm{~mol} \mathrm{NaCH} 3 \mathrm{COO}^{2}$

Add 1 mL 1.0 M HCl to 1 L Buffer, pH 4.75 , so $0.001 \mathrm{~mol} \mathrm{H}^{+}$is added.

The added HCl reacts with the A - present to form more HA

$$
\mathrm{H}^{+}+\mathrm{A}^{-} \rightarrow \mathrm{HA}
$$

Moles HA $=0.100+0.001=0.101 \mathrm{~mol} \mathrm{HA}$
Moles A- $=0.100-0.001=0.099 \mathrm{~mol} \mathrm{~A}^{-}$

$$
\begin{aligned}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-}\right] & \mathrm{pH}
\end{aligned}=4.75+\log \frac{0.099}{0.101}
$$

Buffers resist pH change because added acid or base just change the A-/HA ratio

This video is posted on my website: chemistrysky.com

